17 research outputs found

    Experimental Study of the Intrinsic and Extrinsic Transport Properties of Graphite and Multigraphene Samples

    Get PDF
    This work deals with the intrinsic and extrinsic properties of the graphene layers inside the graphite structure, in particular the influence of defects and interfaces. We discuss the evidence for ballistic transport found in mesoscopic graphite samples and the possibility to obtain the intrinsic carrier density of graphite, without the need of free parameters or arbitrary assumptions. The influence of internal interfaces on the transport properties of bulk graphite is described in detail. We show that in specially prepared multigraphene samples the transport properties show clear signs for the existence of granular superconductivity within the graphite interfaces. We argue that the superconducting-insulator or metal-insulator transition (MIT) reported in the literature for bulk graphite is not intrinsic of the graphite structure but it is due to the influence of these interfaces. Current-Voltage characteristics curves reveal Josephson-like behavior at the interfaces with superconducting critical temperatures above 150K.Comment: 26 pages, 15 figures. To be published in "Graphene, Book 2" by Intech, Open Access Publisher 2011, ISBN: 979-953-307-180-

    Ballistic transport at room temperature in micrometer size multigraphene

    Full text link
    The intrinsic values of the carriers mobility and density of the graphene layers inside graphite, the well known structure built on these layers in the Bernal stacking configuration, are not well known mainly because most of the research was done in rather bulk samples where lattice defects hide their intrinsic values. By measuring the electrical resistance through microfabricated constrictions in micrometer small graphite flakes of a few tens of nanometers thickness we studied the ballistic behavior of the carriers. We found that the carriers' mean free path is micrometer large with a mobility μ≃6×106\mu \simeq 6 \times 10^6 cm2^2/Vs and a carrier density n≃7×108n \simeq 7 \times 10^8 cm−2^{-2} per graphene layer at room temperature. These distinctive transport and ballistic properties have important implications for understanding the values obtained in single graphene and in graphite as well as for implementing this last in nanoelectronic devices.Comment: 6 pages, 6 figure

    Length dependence of the resistance in graphite: Influence of ballistic transport

    Full text link
    Using a linear array of voltage electrodes with a separation of several micrometers on a 2020 nm thick and 30 μ\mum long multigraphene sample we show that the measured resistance does not follow the usual length dependence according to Ohm's law. The deviations can be quantitatively explained taking into account Sharvin-Knudsen formula for ballistic transport. This allows us to obtain without free parameters the mean free path of the carriers in the sample at different temperatures. In agreement with recently reported values obtained with a different experimental method, we obtain that the carrier mean free path is of the order of ∼2μ\sim 2 \mum with a mobility μ∼107\mu \sim 10^7 cm2^{2}V−1^{-1}s−1^{-1}. The results indicate that the usual Ohm's law is not adequate to calculate the absolute resistivity of mesoscopic graphite samples.Comment: 5 pages, 5 figures, in press in Journal of Applied Physics (2012

    Enhancement of the ferromagnetic order of graphite after sulphuric acid treatment

    Full text link
    We have studied the changes in the ferromagnetic behavior of graphite powder and graphite flakes after treatment with diluted sulphuric acid. We show that this kind of acid treatment enhances substantially the ferromagnetic magnetization of virgin graphite micrometer size powder as well as in graphite flakes. The anisotropic magnetoresistance (AMR) amplitude at 300 K measured in a micrometer size thin graphite flake after acid treatment reaches values comparable to polycrystalline cobalt.Comment: 3.2 pages, 4 figure

    Changes in the electrical transport of ZnO under visible light

    Full text link
    Complex impedance spectroscopy data in the frequency range 16Hz < f < 3 MHz at room temperature were acquired on pure ZnO single crystal and thin film. The measured impedance of the ZnO samples shows large changes with time after exposure to or covering them from visible light. At fixed times Cole-Cole-diagrams indicate the presence of a single relaxation process. A simple analysis of the impedance data allows us to obtain two main relaxation times. The behavior for both, ZnO crystal and thin film, is similar but the thin film shows shorter relaxation times. The analysis indicates the existence of two different photo-active defects with activation energies between ~0.8 eV and ~1.1 eV.Comment: 11 pages, 9 figures. Solid state communications, in pres

    The influence of Ga+^+-irradiation on the transport properties of mesoscopic conducting thin films

    Full text link
    We studied the influence of 30keV Ga+^+-ions -- commonly used in focused ion beam (FIB) devices -- on the transport properties of thin crystalline graphite flake, La0.7_{0.7}Ca0.3_{0.3}MnO3_3 and Co thin films. The changes of the electrical resistance were measured in-situ during irradiation and also the temperature and magnetic field dependence before and after irradiation. Our results show that the transport properties of these materials strongly change at Ga+^+ fluences much below those used for patterning and ion beam induced deposition (IBID), limiting seriously the use of FIB when the intrinsic properties of the materials of interest are of importance. We present a method that can be used to protect the sample as well as to produce selectively irradiation-induced changes.Comment: 14 pages, 11 figures, will be published in Nanotechnology 201

    Evidence of Josephson-coupled superconducting regions at the interfaces of Highly Oriented Pyrolytic Graphite

    Full text link
    Transport properties of a few hundreds of nanometers thick (in the graphene plane direction) lamellae of highly oriented pyrolytic graphite (HOPG) have been investigated. Current-Voltage characteristics as well as the temperature dependence of the voltage at different fixed input currents provide evidence for Josephson-coupled superconducting regions embedded in the internal two-dimensional interfaces, reaching zero resistance at low enough temperatures. The overall behavior indicates the existence of superconducting regions with critical temperatures above 100 K at the internal interfaces of oriented pyrolytic graphite.Comment: 6 Figures, 5 page

    Evidence for semiconducting behavior with a narrow band gap of Bernal graphite

    Full text link
    We have studied the resistivity of a large number of highly oriented graphite samples with areas ranging from several mm2^2 to a few μ\mum2^2 and thickness from ∼10\sim 10 nm to several tens of micrometers. The measured resistance can be explained by the parallel contribution of semiconducting graphene layers with low carrier density <109< 10^9 cm−2^{-2} and the one from metallic-like internal interfaces. The results indicate that ideal graphite with Bernal stacking structure is a narrow-gap semiconductor with an energy gap Eg∼40E_g \sim 40 meV.Comment: 14 pages, 4 Figures, to be published in New Journal of Physics (in press, 2012
    corecore